Phosphate solubilizing bacteria inducing systemic resistance with a potential for use as biofertilizer for rice
Abstract
Induced systemic resistance (ISR) and biofertilizer are two activities in plant protection from pathogens as well as an alternative to the use of traditional fertilizers. The purpose of the study was to determine other features of 4 bacteria that have the ability as phosphate solvents and produce indole and siderophore compounds that determine them as inducers of systemic resistance and indicate their possibility to be applied as biofertilizers in rice plants. This study is experimental with four (4) bacteria that have been identified and characterized molecularly:Â Paenibacillus alvei AP4SR, Paenibacillus alvei AP6SR, Bacillus cereus RH8SR, and Bacillus cereus RH10SR. The results showed that the characteristics of the four bacteria could be applied as biofertilizers. The ability to fix nitrogen was shown by Paenibacillus alvei AP4SR, Paenibacillus alvei AP6SR and Bacillus cereus RH10SR, while the ability to dissolve potassium was shown by Paenibacillus alvei AP4SR, Bacillus cereus RH8SR, and Bacillus cereus RH10SR. Only three isolates were able to increase plant metabolite levels, namely Paenibacillus alvei AP4SR, Bacillus cereus RH10SR and Bacillus cereus RH8SR. Bacterial inoculation had a significant effect on plant height and the number of tillers at the age of 40 days, the number of tillers/plant increased to 56.52%.
.
Full Text:
PDFReferences
Adiaha, M.S. (2017). The role of organik matter in tropical soil productivity. World Scientific News, 86(1), 1–66. Retrieved from http://www.worldscientificnews.com/
Awika, J.M., Rooney, L.W., Wu, X., Prior, R.L., & Zevallos, L.C. (2003). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem, 51, 6657–6662. Retrieved from https://doi.org/10.1021/jf034790i
Aly, M.M., Sayed, H.E-S,A El & Jastaniah, S.D. (2012). Synergic effect between Azotobacter vinelandii and Streptomyces sp Isolated from Salin Soil on Seed Germination and Growth of Wheat Plant. Journal of American Science, 8(5), 667-676, Retrieved from http://www.americanscience.org
Babu, R.M., Sajeena, A, Samundeeswari, A.V., Sreedhar, A. Vidhyasekeran, P., & Reddy, M.S. (2003). Induction of bacterial blight (Xanthomonas pryzae pv. Oryzae) resitance in rice by treatment with acibenzolar-S-methyl. Ann.Appl. Biol, 143, 333-340. Retrieved from https://doi.org/10.1111/j.1744-7348.2003.tb00302.x
Baker, A.V., & Pilbean, D.J. (2007). Hankbook of plant nutrient1 st. Ed. CRC/Taylor and Francis London. UK. P.613.
Chiappero, J. Cappellari, L.R. Alderete, L.G.S. Palermo, T.B., &
Banchio, E. (2019). Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Industrial Crops & Products, 139. Retrieved from https://doi.org/10.1016/j.indcrop.2019.111553
Dai, Z., Tan, J., Zhou, C., Yang X., Yang, F., Zhang, S., Sun, S., Miao, X., & Shi, Z. (2019). The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resitance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol Journal, 17(8), 1657-1669. Retrieved from https://doi.org/10.1111/pbi.13091
de Tombeur, F., Sohy, V., Chenu, C., Colinet, G., and Cornelis, J.T. (2018). Effects of permaculture practices on soil physicochemical properties and organik matter distribution in aggregates: a case study of the bec-hellouin farm (france). Front. Environ. Sci, 6(116), Retrieved from https://doi.org/10.3389/fenvs.2018.001
Dewi, W.S., & Pujiasmanto, B. (2019). Indigenous phosphate-solubilizing bacteria enhance germination in deteriorated rice seed. Bulgarian Journal of Agricultural Science, 25 (3), 486-493. Retrieved from https://journal.agrojournal.org
Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Okon, Y., & Vanderleyden, J. (2003). Effect of inoculation with wild type Azospirillum brasilensis and A. Irekense strain on development and nitrogen uptake of of spring wheat and grain maize. Biol.Fert. Soils, 36, 284-297. Retrieved from https://link.springer.com/article/10.1007/s00374-002-0534-9
Farhan, H., Rammal, H., Hijazi, A., Hamad, H., Daher, A., Redaon, M., & Badran, B. (2012). In vitro antioxidant activity of ethanolic and aqueous extracts from crude malva parviflora l grown in lebanon. Asian Journal of Pharmaceutical and Clinical Research, 5, 234 – 238. Retrieved from https://www.researchgate.net/profile/Hassan-Rammal/publication/288801984
Garcia, D.L., Probanza, A., Ramos, B., & Manero, F.J.G. (2001). Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria. J. Plant Nutri. Soil.Sci, 164, 1-7
Geethalakshmi, M., Ravichandran, V., Boominathan, P., & Jeyakumar. P. (2017). Response of phosphate solubilising inoculants (jumpstart) on biochemistry and yield of rice (Oryza sativa L). Int.J.Curr.Microbiol.App.Sci, 6(6), 1529-1537. Retrieved from https://doi.org/10.0546/ijcmas.2017. 606.180
Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109–117. Retrieved from https://doi.org/10.1139/m95-015
Gupta, M., Kiran, S., Gulati, A., Singh, B., & Tewari, R. (2012). Isolation and identification of phosphate solubilizing bacteria able to enhance the growth an Aloin-A biosyntetis of Aloe barbadensis. Miller. Microbiological Research, 167, 358-363. Retrieved from https://doi.org/10.1016/j.micres.2012.02.004
Goswani, D., Janki, N., Thakker, & Dhadhukia, P.C. (2016). Pertraying mechanics of plant growth promoing rhizobacteria (PGPR): A review. Retrieved from https://doi.org/10.1080/23311932.2015.1127500
Hartanti, S., Rohmah, S., & Tamtarini. (2003). Kombinasi penambahan CMC dan dektrin pada pengolahan bubuk buah mangga dengan pengeringan surya. Prosiding Seminar Nasional dan Pertemuan Tahunan PATPI (Juli). Yogyakarta.
Joo, G.I., Kim, Y., Lee, I.J., Song, K.S., & Rhee, I.K. (2004). Growth promoting of red papperplug seedling and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnology Letters, 26(6), 487-491. Retrieved from https://doi.org/10.1023/B:BILE.0000019555.87121.34
Kim, K.Y., Jordan, D., & McDonald, G.A. (1998). Enterobacter agglomerans, phosphate solubilizing bacteria and microbioal activity in soil: effect of carbon source. Soil Biol. Biochem, 30, 995-1003. Retrieved from https://doi.org/10.1016/S0038-0717(98)00007-8
Klopper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistant and promotion of plant growth by Bacillus spp. Phytophatology, 94, 1259-1266. Retrieved from https://doi.org/10.1094/PHYTO.2004.94.11.1259
Liu, R., Hu, H., Suter, H., Hayden, H. L., He, J., Mele, P., & Chen, D. (2016). Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils. Frontiers in microbiology, 7, 1373. Retrieved from https://doi.org/10.3389/fmicb.2016.01373
Lyon, G.D., & McGill, F.M. (1988). Inhibition of growth of Erwinia carotovora in vitro by phenolics Potato Research, 31, 461-467. Retrieved from https://link.springer.com/article/10.1007/BF02357883
Mohammadi, K., & Sohrabi, Y. (2012). Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci, 7(5), 307-316. Retrieved from http://www.arpnjournals.com/jabs/
Mukhriani, Nonci, F., & Mumang. (2014). Penetapan Kadar Tanin Total Ekstrak Biji Jintan Hitam (Nigella Sativa) Secara Spektrofotometri Uv-Vis. JF FIK UINAM, 2(4). Retrieved from https://doi.org/10.24252/jurfar.v2i4.2162
Rashmi, M.A., Verghese, A., Shivashankar, S., Chakravarthy, A.K., Sumathu, M., & Kandakoor, S. (2017). Does change in tannin content in mango (Mangifera indica) fruits influence the extent of fruit fly (Bactrocera dorsalis Hendel) herbivory. J Entomol and Zool Studies, 5(4), 381-385. Retrieved from https://www.researchgate.net/profile/Rashmi-Ma/publication/318729832
Rozema, J., Van De Staaij, J., Bjorn, L.O., & Caldwell M. (1997). UV-B as an environmental factor in plant life: stress and regulation. A Cell Press Journal, 12(1), 22–28. Retrieved from https://doi.org/10.1016/S0169-5347(96)10062-8
Singh, Y.V., Singh, K.K., & Sharma, S.K. (2013). Influence of crop nutrition on grain yield, seed quality and water productivity under two rice cultivation systems. Rice Science, 20(2), 129-138. Retrieved from https://doi.org/10.1016/S1672-6308(13)60113-4
Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14, 2167 – 2180. Retrieved from https://doi.org/10.3390/molecules14062167
Sarma, B.K., & Singh, H.B. (2014). Harnessing transgenerational plant immunity. Current Science 107, 1941e1942.
Setiawan, M.H. (2015). Isolasi Dan Uji Daya Antimikroba Ekstrak Kulit Nanas (Ananas Comosus L. Merr). Skripsi Universitas Negeri Semarang.
Shen, X., Hu, H., Peng, H., Wang, W & Zhang, X. (2013). Comperative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 271. Retrieved from https://link.springer.com/article/10.1186/1471-2164-14-271
Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D., & Agati G. (2004). Differential acumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol, 163, 547–561. Retrieved from https://doi.org/10.1111/j.1469-8137.2004.01126.x
Timmusk, S., & Wagner, E.G.H. (2004). The plant growth-promoting rhizobacterium Paenibacillus polymixa induces changes in Arabidobsis thaliana gene expresion- a possible conection between biotic and abiotic stress responses. Retrieved from . https://doi.org/10.1094/MPMI.1999.12.11.951
Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol, 7(6), 581-595. Retrieved from https://doi.org/10.1055/s-2005-873009
Van Loon, L.C. (2007). Plant response to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol, 119, 243-254. Retrieved from https://doi.org/10.1007/s10658-007-9165-1
Venisse, J.S., Malnoy, M., Faize, M., Paulin, J.P., & Brisset, M.N. (2002) Modulation of defense responses of Malus ssp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interactions, 15, 1204 –1212. Retrieved from https://doi.org/10.1094/MPMI.2002.15.12.1204
DOI: https://doi.org/10.31932/jpbio.v8i1.2204
Article Metrics
Abstract view : 193 timesPDF - 174 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.