PERANCANGAN SISTEM DETEKSI KEMATANGAN BUAH NAGA MERAH BERBASIS WEB MENGGUNAKAN METODE ALGORITMA YOLO (YOU ONLY LOOK ONCE)

Nurhayati Nurhayati, Aditya Kusuma

Abstract


Artificial intelligence (AI) plays a crucial role in modern agriculture, particularly through digital image processing that enhances efficiency and accuracy in decision-making. This research focuses on the development of a deep learning- based dragon fruit ripeness detection application using the YOLOv8 algorithm. The dragon fruit produced from the Hylocereus and Selenicereus cacti has high economic value, but it requires proper post-harvest detection. The manual process of determining the ripeness of dragon fruit is often inaccurate and time-consuming, making AI-based solutions essential. The YOLOv8 algorithm, known for its ability to detect objects in real-time with high accuracy, is implemented in this application to classify the ripeness of dragon fruit. This research successfully designed a system capable of accurately detecting the ripeness of dragon fruit using the Yolo Algorithm. (You Only Look Once). The designed web application provides an intuitive user interface that makes it easy for users to make real-time decisions through internet-connected devices. By simplifying the maturity determination process, this solution can help accelerate the assessment and sorting of dragon fruit maturity.


Keywords


Artificial intelligence, Deep Learning, Dragon Fruit, YOLO (You Only Look Once) Algorithm, Detection.

Full Text:

PDF

References


Aras, S., Tanra, P., & Bazhar, M. (2024). Deteksi Tingkat Kematangan Buah Tomat Menggunakan YOLOv5. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 623–628. https://doi.org/10.57152/malcom.v4i2.1270

Astika Winahyu, D., Candra Purnama, R., & Yevi Setiawati, M. (2019). TEST OF ANTIOXIDANT ACTIVITIES IN RED DRAGON FRUIT EXTRACT (Hylocereus polyrhizus) USING DPPH METHOD UJI AKTIVITAS ANTIOKSIDAN PADA EKSTRAK KULIT BUAH NAGA MERAH (Hylocereuspolyrhizus) DENGAN METODE DPPH. Jurnal Analis Farmasi, 4(2), 117–121.

Atika, M., & Sayekti, R. (2023). Open Access under Creative Commons Attribution NonCommercial Share Alike 4.0 International License (CC-BY-NC-SA) Studi Literatur Review Sistem Informasi Perpustakaan Berbasis Artificial Intelligence (AI) Library Information System Based on Artificial Intelligence (AI): Literatur Review. Palimpsest: Jurnal Ilmu Informasi DanPerpustakaan, 14(1), 2023.

Folla, M. M., & Bulan, S. J. (2023). Penerapan Metode Gray Level Co-Occurrence Matrix dalam Mengklasifikasi Tingkat Kematangan Buah Naga Berbasis Citra. Jurnal Komputer Dan Informatika, 11(2), 210–116. https://doi.org/10.35508/jicon.v11i2.11847

Kurniawan, R., Martadinata, A. T., & Cahyo, S. D. (2023). Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5. Journal of Information System Research (JOSH), 5(1), 302–309. https://doi.org/10.47065/josh.v5i1.4408

Mukin, R. F. (2023). Implementasi dan Reputasi Face Recognition Sebagai Kecerdasan Buatan di Masyarakat Luas. September.

Nurhafizhah, A. Y., Widians, J. A., & Budiman, E. (2020). Sistem Pakar Identifikasi Hama Tanaman Buah Naga. Jurnal Rekayasa Teknologi Informasi (JURTI), 4(1), 11. https://doi.org/10.30872/jurti.v4i1.4035

Prasetya, S. A., Abast, Y., Mangole, M., & Rahman, J. (2024). Implementasi Convolutional Neural Network untuk Klasifikasi Tingkat Kematangan Buah Nanas Menggunakan YOLOv8. 6(1), 567–575. https://doi.org/10.47065/bits.v6i1.5396

Rachmawati, F., & Widhyaestoeti, D. (2020). Deteksi Jumlah Kendaraan di Jalur SSA Kota Bogor Menggunakan Algoritma Deep Learning YOLO. Prosiding LPPM UIKA Bogor, 360–370.

Syam, S. (2019). Strategi Pengembangan Usaha Pada Komoditas Buah Naga Di Kabupaten Sinjai. Jurnal Ekonomika, 3(2), 43–51. http://journal.lldikti9.id/Ekonomika/article/view/252

Verdinandus Lelu Ngongo1, Taufiq Hidayat2, dan W. (2019). PENDIDIKAN DI ERA DIGITAL Verdinandus. PENDIDIKAN DI ERA DIGITAL, 628–638. https://doi.org/10.1515/9781400866137

Widiati, W., & Haryanto, T. (2024). Deep Learning for Automatic Classification of Avocado Fruit Maturity. Jurnal Pilar Nusa Mandiri, 20(1), 75–80. https://doi.org/10.33480/pilar.v20i1.5043




DOI: https://doi.org/10.31932/jutech.v6i1.4990

Article Metrics

Abstract view : 141 times
PDF - 64 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nurhayati Nurhayati, Aditya Kusuma

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License
JUTECH: Journal Education and Technology is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.