Health benefits of aqueous and ethanolic extracts of medinilla speciosa blume
Abstract
Medinilla speciosa (local name: parijoto) has many pharmacological benefits, including for treating female infertility. This study aimed to identify bioactive compounds of the aqueous and ethanolic extracts of Medinilla speciosa; to find information on their pharmacological benefits, and to do its docking profile with the protein phosphatase1, which is associated with the enhancement of female fertility. Articles were searched from PubMed. The components of Medinilla speciosa were analyzed with LC-MS/MS. In silico study was conducted based PubChem, Protein Data Base, and Swiss ADME. Pyrx 0.8 and Discovery Studio Visualizer v21.1 were used to predict the interaction. Four flavonoids were identified, namely fisetin, robinetin, luteolin, and kaempferol. Except for robinetin, they exist in glycosidic form. One polyphenol, ellagic acid, was also identified. Literature studies showed they have various pharmacological benefits, such as antioxidants, anti-inflammation, anticancer, antidiabetes, organ protection, and antimicrobial. However, no information is available on its potential for fertility enhancement. Docking analysis showed that the bioactive compounds interact with the A and C chains of the catalytic domain of protein phosphatase 1 (PP1). Aqueous and ethanolic extracts of Medinilla speciosa possess fisetin, robinetin, luteolin, kaempferol, and ellagic acid that bind to catalytic chains of protein phosphatase 1.Â
Â
Full Text:
PDFReferences
Aa, L. X., F. Fei, Q. Qi, R. B. Sun, S. H. Gu, Z. Z. Di, J. Y. Aa, G. J. Wang,& C. X. Liu. (2020). Rebalancing of the gut flora and microbial metabolism is responsible for the anti-arthritis effect of kaempferol, Acta Pharmacol Sin, 41, 73-81. Retrieved from http://doi.org/10.1038/s41401-019-0279-8
Adan, A., & Y. Baran. (2016). Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. Tumour Biol, 37(5), 5781-5795. Retrieved from http://doi.org/10.1007/s13277-015-4118-3
Ahad, A., Ganai, A.A., Mujeeb, M., Siddiqui, W.A. (2014). Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact, 219, 64-75. Retrieved from http://doi.org/10.1016/j.cbi.2014.05.011
Akileshwari, C., Raghu, G., Muthenna, P., Mueller, N.H., Suryanaryana, P., Petrash, J.M., & Reddy, G.B. (2014). Bioflavonoid ellagic acid inhibits aldose reductase: Implications for prevention of diabetic complications, J Funct Foods, 6, 374-383. Retrieved from http://doi.org/10.1016/j.jff.2013.11.004
Althunibat, O.Y., Al Hroob, A.M., Abukhalil, M.H., Germoush, M.O., Bin-Jumah, M., & Mahmoud, A.M. (2019) Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci, 221, 83-92. Retrieved from http://doi.org/10.1016/j.lfs.2019.02.017
Amin, S., Ullah, B., Ali, M., Khan, H, Rauf, A., Khan, S.A., & Sobarzo-Sánchez, E. (2020). In Vitro α-glucosidase Inhibition and Com.putational Studies of Kaempferol Derivatives from Dryopteris cycanida. Curr Top Med Chem, 20(9), 731-737. Retrieved from http://doi.org/10.2174/1568026620666200130161033
Arab, H.H., Gad, A.M., Fikry, E.M., & Eid, A.H. (2019). Ellagic acid attenuates testicular disruption in rheumatoid arthritis via targeting inflammatory signals, oxidative perturbations and apoptosis. Life Sci, 239, 117012. Retrieved from http://doi.org/10.1016/j.lfs.2019.117012
Asif, H., Alamgeer, Bukhari, I.A., Vohra, F., Afzal, S., Khan, S.W., & Niazi, Z.R. (2019). Phytochemical analysis of crude extract of Delphinium brunonianum and its effect on hypertension and metabolic perturbations in fructose fed rats. Nat Prod Res, 35(17), 2982-2986. Retrieved from http://doi.org/10.1080/14786419.2019.1679134
Aziz, N., Kim, M.Y., & Cho, J.Y. (2018). Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol, 225, 342-358. Retrieved from http://doi.org/10.1016/j.jep.2018.05.019
Balakrishnan, B., Siddiqi, A., Mella, J., Lupo, A., Li, E., Hollien, J., Johnson, J., & Lai, K. (2019). Salubrinal enhances eIF2α phosphorylation and improves fertility in a mouse model of Classic Galactosemia. Biochim Biophys Acta Mol Basis Dis, 1865(11), 1-21. Retrieved from http://doi.org/10.1016/j.bbadis.2019.07.010
Banzouzi, J.T., Prado, R., Menan, H., Valentin, A., Roumestan, C., Mallie, M., Pelissier, Y., & Blache, Y. (2002). In vitro antiplasmodial activity of extracts of Alchornea cordifolia and identification of an active constituent: ellagic acid. J Ethnopharmacol, 81(3), 399-401. Retrieved from http://doi.org/10.1016/s0378-8741(02)00121-6
Belmares-Cerda, R.E., Aguilera-Carbo, A., Mata-Cárdenas, B., RodrÃguez-Herrera, R., & Aguilar, C.N. (2016). Fermentation-assisted extraction of ellagic acid and its antiprotozoal activity. New Biotechnology, 33(3), 414. Retrieved from http://doi.org/10.1016/j.nbt.2015.10.078
Bharathi, E., & Jagadeesan, G. (2014). Antioxidant potential of hesperidin and ellagic acid on renal toxicity induced by mercuric chloride in rats. Biomed Prev Nutr, 4(2), 131-136. Retrieved from http://doi.org/10.1016/j.bionut.2013.12.007
Calderón-Montaño, J.M., Burgos-Morón, E., Pérez-Guerrero, C., & López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini Rev Med Chem, 11(4), 298-344. Retrieved from http://doi.org/10.2174/138955711795305335
Campos-Vidal, Y., Herrera-Ruiz, M., Trejo-Tapia, G., Gonzalez-Cortazar, M., Aparicio, A.J., & Zamilpa, A. (2021). Gastroprotective activity of kaempferol glycosides from Malvaviscus arboreus Cav. J Ethnopharmacol, 268, 1-8. Retrieved from http://doi.org/10.1016/j.jep.2020.113633
Chen, G.H., Lin, Y.L., Hsu, W.L., Hsieh, S.K., & Tzen, J.T.C. (2015). Significant elevation of antiviral activity of strictinin from Pu'er tea after thermal degradation to ellagic acid and gallic acid. J Food Drug Anal, 23(1), 116-123. Retrieved from http://doi.org/10.1016/j.jfda.2014.07.007
Choy, M.S., Yusoff, P., Lee, I.C., Newton, J.C., Goh, C.W., Page, R., Shenolikar, S., & Peti, W. (2015). Structural and Functional Analysis of the GADD34:PP1 eIF2α Phosphatase. Cell Rep, 11(12), 1885-1891. Retrieved from http://doi.org/10.1016/j.celrep.2015.05.043
Corbett, S., Daniel, J., Drayton, R., Field, M., Steinhardt, R., & Garrett, N. (2010). Evaluation of the anti-inflammatory effects of ellagic acid. J Perianesth Nurs, 25(4), 214-220. Retrieved from http://doi.org/10.1016/j.jopan.2010.05.011. PMID: 20656257
Cushnie, T.P., & Lamb, A.J. (2005). Antimicrobial activity of flavonoids. Int J Antimicrob Agents, 26(5), 343-356. Retrieved from http://doi.org/10.1016/j.ijantimicag.2005.09.002
De Melo, G.O., Malvar, D.do C., Vanderlinde, F.A., Rocha, F.F., Pires, P.A., Costa, E.A., de Matos, L.G., Kaiser, C.R., & Costa, S.S. (2009). Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. J Ethnopharmacol, 124(2), 228-232. Retrieved from http://doi.org/10.1016/j.jep.2009.04.024
Dhingra, D., & Chhillar, R. (2012). Antidepressant-like activity of ellagic acid in unstressed and acute immobilization-induced stressed mice. Pharmacol Rep, 64(4), 796-807. Retrieved from https://doi.org/10.1016/s1734-1140(12)70875-7
Dhingra, D.& Jangra, A. (2014). Antiepileptic activity of ellagic acid, a naturally occurring polyphenolic compound, in mice. J Func Foods, 10, 364-369. Rerieved from https://doi.org/10.1016/j.jff.2014.07.011
Elhemely, M.A., Omar, H.A., Ain-shoka, A.A., El-Latif, H.A., Abo-Youssef, A.M., & Sherbiny, G.A. (2014). Rosuvastatin and ellagic acid protect against isoproterenol-induced myocardial infarction in hyperlipidemic rats. Beni-Suef univ J Basic Appl Sci, 3(4), 239-246. Retrieved from https://doi.org/10.1016/j.bjbas.2014.10.010
Francisco, V., Figueirinha, A., Costa, G., Liberal, J., Lopes, M.C., GarcÃa-RodrÃguez, C., Geraldes, C.F.G.C., Cruz, M.T., & Batista. M.T. (2014). Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass, J Funct Foods, 10, 436-43. Retrieved from https://doi.org/10.1016/j.jff.2014.07.003
Fu, R., Chen, F., &Guo Y. (2020). Anti-inflammatory mechanism and active ingredients of the Chinese tallow tree. J Ethnopharmacol, 250, 112497. Retrieved from https://doi.org/10.1016/j.jep.2019.112497
GarcÃa-Niño, W.R., & Zazueta, C. (2015). Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res, 97, 84-103. Retrieved from https://doi.org/10.1016/j.phrs.2015.04.008
Germanò, M.P., Certo, G., D'Angelo, V., Sanogo, R., Malafronte, N., De Tommasi, N., & Rapisarda, A. (2015). Anti-angiogenic activity of Entada africana root. Nat Prod Res, 29(16), 1551-1556. Retrieved from https://doi.org/10.1080/14786419.2014.987773
Girish, C., Raj, V., Arya, J, & Balakrishnan, S. (2013). Involvement of the GABAergic system in the anxiolytic-like effect of the flavonoid ellagic acid in mice. Eur J Pharmacol, 710(1-3), 49-58. Retrieved from https://doi.org/10.1016/j.ejphar.2013.04.003
Goudarzi, M., Amiri, S., Nesari, A., Hosseinzadeh, A., Mansouri, E., & Mehrzadi S. (2018). The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sci, 198, 38-45. Retrieved from https://doi.org/10.1016/j.lfs.2018.02.022
Han, Q-H., Mu, Y-X., Gong ,X., Zhang, N., Zhang, C-H., & Li, M-H. (2019). Chemical constituents of Medinilla septentrionalis (W. W. Sm.) H. L. Li (Melastomataceae). Biochem Syst Ecol, 86, 103901. Retrieved from https://doi.org/10.1016/j.bse.2019.05.009
Hanum, A.S., Prihastanti, E., & Jumari, J. (2017). Ethnobotany of utilization, role, and philosopical meaning of parijoto (Medinilla, spp) on Mount Muria in Kudus Regency. Central Java. AIP Conf Proc, 1868(1), 1-7. Retrieved from https://doi.org/10.1063/1.4995210
Hua, F., Li, J.Y., Zhang, M., Zhou, P., Wang, L., Ling, T.J., & Bao, G.H. (2022). 'Kaempferol-3-O-rutinoside exerts cardioprotective effects through NF-κB/NLRP3/Caspase-1 pathway in ventricular remodeling after acute myocardial infarction. J Food Biochem, 46, e14305. Retrieved from https://doi.org/10.1111/jfbc.14305
Hwang, J.M., Cho, J.S., Kim, T.H., & Lee, Y.I. (2010). Ellagic acid protects hepatocytes from damage by inhibiting mitochondrial production of reactive oxygen species. Biomed Pharmacother, 64(4), 264-70. Retrieved from https://doi.org/10.1016/j.biopha.2009.06.013
Jia, Y., Ma, Y., Cheng, G., Zhang, Y., & Cai S. (2019). Comparative Study of Dietary Flavonoids with Different Structures as α-Glucosidase Inhibitors and Insulin Sensitizers. J Agric Food Chem, 67(37), 10521-10533. Retrieved from https://doi.org/10.1021/acs.jafc.9b04943
Jung, H.A., Woo, J.J., Jung, M.J., Hwang, G.S., & Choi, J.S. (2009) Kaempferol glycosides with antioxidant activity from Brassica juncea. Arch Pharm Res, 32(10), 1379-1384. Retrieved from https://doi.org/10.1007/s12272-009-2006-3
Kyriakis, E., Stravodimos, G.A., Kantsadi, A.L., Chatzileontiadou, D.S., Skamnaki, V.T., & Leonidas, D.D. (2015). Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b. FEBS Lett, 589(15), 1787-1794. Retrieved from https://doi.org/10.1016/j.febslet.2015.05.013
Le Donne, M., Lentini, M., Alibrandi, A., Salimbeni, V., Giuffre, G., Mazzeo, F., Triolo, O., & D'Anna, R. (2017). Antiviral activity of Ellagic acid and Annona Muricata in cervical HPV related pre-neoplastic lesions: A randomized trial. J Funct Foods, 35, 549-554. Retrieved from https://doi.org/10.1016/j.jff.2017.06.006
Lin, Z., Lin, C., Fu, C., Lu, H., Jin, H., Chen, Q., & Pan, J. (2020). The protective effect of Ellagic acid (EA) in osteoarthritis: An in vitro and in vivo study. Biomed Pharmacother, 125, 109845. Retrieved from https://doi.org/10.1016/j.biopha.2020.109845
Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26. Retrieved from https://doi.org/10.1016/s0169-409x(00)00129-0
Ma, T., Kandhare, A.D., Mukherjee-Kandhare, A.A., & Bodhankar, S.L. (2019). Fisetin, a plant flavonoid ameliorates doxorubicin-induced cardiotoxicity in experimental rats: the decisive role of caspase-3, COX-II, cTn-I, iNOs and TNF-α. Mol Biol Rep, 46(1), 105-118. Retrieved from http://doi.org/10.1007/s11033-018-4450-y
Maxwell, J.F. (1978). A revision of Medinilla, Pachycentria and Pogonanthera (Melastomataceae) from the Malay Penisula. Garden's Bulletin, Singapore, 31(4), 139-216. Retrieved from https://biostor.org/reference/140110
Mele, L., Mena, P., Piemontese, A., Marino, V., López-Gutiérrez, N., Bernini, F., Brighenti, F., Zanotti, I., & Del Rio D. (2016). Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch Biochem Biophys, 599, 42-50. Retrieved from http://doi.org/10.1016/j.abb.2016.02.017
Mishra, A,. Kaur, U., & Singh, A. (2022). Fisetin 8-C-glucoside as entry inhibitor in SARS CoV-2 infection: molecular modelling study. J Biomol Struct Dyn, 40(11), 5128-5137. Retrieved from http://doi.org/10.1080/07391102.2020.1868335
Nabavi, S.F., Braidy, N., Gortzi, O., Sobarzo-Sanchez, E., Daglia, M., Skalicka-Woźniak, K., & Nabavi, S.M. (2015). Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull, 119(Pt A), 1-11. Retrieved from http://doi.org/10.1016/j.brainresbull.2015.09.002
Nguyen, H., Thanh, T., Jin, J., Septiana, I., Quereshi, D., Pal, K., & Kim, D. (2020). Chapter 2 - Enzymatic synthesis of flavonoid glucosides and their biochemical characterization. in Pal, K., Banerjee, I., Sarkar,P., Kim, D., Deng, W-P., Dubey, N.K., & Majumder, K. (eds.), Biopolymer-Based Formulations (Elsevier). Retreived from https://doi.org/10.1016/B978-0-12-816897-4.00002-3
Özay, Y., Güzel, S., Yumrutaş, Ö., Pehlivanoğlu, B., Erdoğdu, İ.H., Yildirim, Z., Türk, B.A., & Darcan, S. (2019). Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J Surg Res, 233, 284-296. Retrieved from http://doi.org/ 10.1016/j.jss.2018.08.009
Pertiwi, R.B., Hidayah,I.N., Andrianty, D., & Hasbullah, U.H.A. (2019). Antioxidant Activity of Parijoto Fruit Extract at Various Temperature of Food Processing. Jurnal Ilmu Pangan dan Hasil Pertanian, 3(1), 1-9. Retrieved from http://doi.org/10.26877/jiphp.v3i1.3839
Prasath, G.S., Sundaram, C.S., & Subramanian, S.P. (2013). Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats. Endocrine, 44(2), 359-368. Retrieved from http://doi.org/10.1007/s12020-012-9866-x
Qin, L., Chen, Z., Yang, L., Shi, H., Wu, H., Zhang, B., Zhang, W., Xu, Q., Huang, F., & Wu X. (2019). Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology, 426, 152256. Retrieved from http://doi.org/10.1016/j.tox.2019.152256
Rahayu, I., & Timotius, K.H. (2022). Phytochemical Analysis, Antimutagenic and Antiviral Activity of Moringa oleifera L. Leaf Infusion: In Vitro and In Silico Studies, Molecules, 27(13), 4017. Retrieved from http://doi.org/10.3390/molecules27134017
Sa'Adah, N.N., Nurhayati, A.P.D., & Purwani, K.I. (2018). Antihyperlipidemic and anti-obesity effects of the methanolic extract of parijoto (Medinilla speciosa). AIP Conf Proc; 2002(1), Retrieved from http://doi.org/10.1063/1.5050142
Sanchez, D., & Miguel, L. (2017). Identificacion Por Gc-Ms Y Lc-Ms De Metabolitos Secundarios Aislados De Medinilla Myriantha (Melastomataceae) Y Evaluacion De Su Actividad Antioxidante', Universidad Industrial de Santander, Escuela De Quimica.
Sarikurkcu, C., Sahinler, S.S., Ceylan, O., & Tepe, B. (2020). Onosma pulchra: Phytochemical composition, antioxidant, skin-whitening and anti-diabetic activity. Ind Crop Prod, 154, 112632. Retrieved from https://doi.org/10.1016/j.indcrop.2020.112632
Shen, B., Shangguan, X., Yin, Z., Wu, S., Zhang, Q., Peng, W., Li, J., Zhang, L., & Chen, J. (2021). Inhibitory Effect of Fisetin on α-Glucosidase Activity: Kinetic and Molecular Docking Studies. Molecules, 26(17), 1-11. Retrieved from http://doi.org/ 10.3390/molecules26175306
Sugiarti, L., & Pujiastuti, E. (2017). Uji Aktivitas Antibakteri Ektrak Etanol Buah Parijoto (Medinilla speciosa Blume) terhadap Bakteri Staphylococcus aureus dan Echerichia Coli (Antibacterial activity of ethanolic extract of parijoto (Medinilla speciosa Blume) on Staphylococcus aureus and Escherichia coli), Cendekia Journal of Pharmacy, 1(1), 25-33. Retrieved from https://doi.org/10.31596/cjp.v1i1.4
Tusanti, I., Johan, A., & Kisdjamiatun, R.A. (2014). Sitotoksisitas in vitro ekstrak etanolik buah parijoto (Medinilla speciosa, reinw.ex bl.) terhadap sel kanker payudara T47D. Jurnal Gizi Indonesia (The Indonesian Journal of Nutrition), 2(2), 53-58. Retrieved from https://doi.org/10.14710/jgi.2.2.53-58
Wang, N., Wang, Z.Y., Mo, S.L., Loo, T.Y., Wang, D.M., Luo, H.B., Yang, D.P., Chen, Y.L., Shen, J.G., & Chen, J.P. (2012). Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res Treat, 134(3), 943-55. Retrieved from http://doi.org/10.1007/s10549-012-1977-9
Wijayanti, D., & Ardigurnita, F. (2018). Potential of Parijoto (Medinilla speciosa) Fruits and Leaves in Male Fertility. Animal Prod, 20(2), 81-86. Retrieved from https://www.animalproduction.net/index.php/JAP/article/view/685
Yang, G., Xing, J., Aikemu, B., Sun, J., & Zheng, M. (2021). Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer. Oncol Rep, 45(4), 1-10. Retrieved from http://doi.org/10.3892/or.2021.7983
Yi, X., Zuo, J., Tan, C., Xian, S., Luo, C., Chen, S., Yu, L., & Luo, Y. (2016). Kaempferol, a Flavonoid Compound from Gynura Medica Induced Apoptosis and Growth Inhibition in MCF-7 Breast Cancer Cell. Afr J Tradit Complement Altern Med, 13(4), 210-215. Retrieved from http://doi.org/10.21010/ajtcam.v13i4.27
Zandi, K., Teoh, B.T., Sam, S.S., Wong, P.F., Mustafa, M.R., & Abubakar, S. (2011). Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J, 8(560), 1-11. Retrieved from http://doi.org/10.1186/1743-422X-8-560
Zang, Y., Zhang, L., Igarashi, K., & Yu, C. (2015).The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct, 6(3), 834-841. Retrieved from http://doi.org/10.1039/c4fo00844h
DOI: https://doi.org/10.31932/jpbio.v8i2.2800
Article Metrics
Abstract view : 301 timesPDF - 239 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.