KINERJA UMKM DI KOTA PALANGKA RAYA: TINJAUAN KEUANGAN, PENJUALAN, DAN STRATEGI PEMASARAN
Abstract
Micro, Small, and Medium Enterprises (MSMEs) in Palangka Raya City face significant challenges in enhancing competitiveness and operational efficiency, despite the continuous growth in the number of business units. One of the main issues lies in the lack of data-driven development strategies and the limited integration of information among MSME actors. This study applies a descriptive quantitative approach using the K-Means Clustering method to classify 100 MSME units based on three key aspects: financial performance, product sales, and marketing strategies. Data were collected via online questionnaires from August to October 2024. The analysis was conducted using the KNIME software to visualize and manage data effectively. The findings reveal homogeneous MSME clusters, with groups demonstrating high financial efficiency and a combination of online and offline marketing strategies showing the best performance. This study recommends that local governments develop more targeted and evidence-based strategies for MSME development. The main limitation of this research is the sample's scope, which may not fully represent the diversity of MSMEs in Palangka Raya. Future studies are encouraged to expand the geographical coverage and apply mixed-method approaches.
Keywords
Full Text:
PDFReferences
Abdullah, D., Susilo, S., Ahmar, A. S., Rusli, R., & Hidayat, R. (2022). The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data. Quality & Quantity, 56(3), 1283–1291.
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295.
Akhmad, A., Khalid, I., & Asdar, A. (2023). Strategy for Development of Micro, Small and Medium Enterprises in Gowa Regency, Indonesia. European Journal of Development Studies, 3(5), 7–15.
Alexandropoulos, S.-A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data preprocessing in predictive data mining. The Knowledge Engineering Review, 34, e1.
Anwar, G., & Abdullah, N. N. (2021). The impact of Human resource management practice on Organizational performance. International Journal of Engineering, Business and Management (IJEBM), 5.
Arraniri, I., Firmansyah, H., Wiliana, E., Setyaningsih, D., Susiati, A., Megaster, T., Rachmawati, E., Wardhana, A., Yuliatmo, W., & Purwaningsih, N. (2021). Manajemen sumber daya manusia. Penerbit Insania.
Bank Indonesia. (2022). Laporan Perekonomian Provinsi Kalimantan Tengah. https://www.bi.go.id/id/publikasi/laporan/lpp/Documents/Laporan-Perekonomian-Provinsi-Kalimantan-Tengah-Mei-2022.pdf
Buckley, P. J., Pass, C. L., & Prescott, K. (1988). Measures of international competitiveness: a critical survey. Journal of Marketing Management, 4(2), 175–200.
Chen, Y. T., & Witten, D. M. (2022). Selective inference for k-means clustering. ArXiv Preprint ArXiv:2203.15267.
Darsana, I. M., & Sukaarnawa, I. G. M. (2023). Manajemen sumber daya manusia. Mafy Media Literasi Indonesia.
Dinas Koperasi dan UMKM. (2023). Pertumbuhan Usaha Mikro, Kecil Dan Menengah Provinsi Kalimantan Tengah. https://diskopukm.kalteng.go.id/dataukm
Ghazal, T. M. (2021). Performances of k-means clustering algorithm with different distance metrics. Intelligent Automation & Soft Computing, 30(2), 735–742.
Haddoud, M. Y., Beynon, M. J., Jones, P., & Newbery, R. (2018). SMEs’ export propensity in North Africa: a fuzzy c-means cluster analysis. Journal of Small Business and Enterprise Development, 25(5), 769–790.
Heryati, A., & Herdiansyah, M. I. (2020). The Application of Data Mining by using K-Means Clustering Method in Determining New Students’ Admission Promotion Strategy. International Journal of Engineering and Advanced Technology, 9(3), 824–833.
Ichsan, R. N., SE, M. M., Lukman Nasution, S. E. I., & Sarman Sinaga, S. E. (2021). Bahan Ajar Manajemen Sumber Daya Manusia (MSDM). CV. Sentosa Deli Mandiri.
Lilis Sulastri, L. (2016). Manajemen Usaha Kecil Menengah. LGM-LaGood’s Publishing.
Lubis, F. A., Harisudin, M., & Fajarningsih, R. U. (2019). Strategi Pengembangan Agribisnis Cabai Merah di Kabupaten Sleman dengan Metode Analytical Hierarchy Process. AGRARIS: Journal of Agribusiness and Rural Development Research, 5(2), 119–128.
Marcelina, D., Kurnia, A., & Terttiaavini, T. (2023). Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering: Cluster Analysis of Small Medium Enterprise Performance with K-Means Clustering Algorithm. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 293–301.
Morissette, L., & Chartier, S. (2013). The k-means clustering technique: General considerations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 9(1), 15–24.
Mustaniroh, S. A., Santoso, I., & Permatasari, M. T. Y. K. (2019). Analisis klaster industri enting geti berdasarkan kinerja UKM dan kualitas produk menggunakan k-means clustering. Jurnal Teknologi Pertanian, 20(2), 103–114.
Mutegi, H. K., Njeru, P. W., & Ongesa, N. T. (2015). Financial literacy and its impact on loan repayment by small and medium entrepreneurs.
Norfai, S. K. M. (2022). Analisis data penelitian (Analisis Univariat, Bivariat dan Multivariat). Penerbit Qiara Media.
Perdana, A., Lee, H. H., Koh, S., & Arisandi, D. (2022). Data analytics in small and mid-size enterprises: Enablers and inhibitors for business value and firm performance. International Journal of Accounting Information Systems, 44, 100547.
Pratika, A., Budiarto, B., & Senjawati, N. D. (2022). Alternatif Strategi Pemasaran Susu Almond Menggunakan Metode Analytical Hierarchy Process (AHP) Pada UMKM Ralalii. Jurnal Dinamika Sosial Ekonomi, 23(2), 159–175.
Rahmanto, B. T., Nurjanah, S., & Darmo, I. S. (2018). Peran Komunitas Dalam Meningkatkan Kinerja Ukm (Ditinjau Dari Faktor Internal). Jurnal Riset Manajemen Dan Bisnis (JRMB) Fakultas Ekonomi UNIAT, 3(1), 18.
Rustiyan, R., & Mustakim, M. (2018). Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(2), 171–176.
Sari, A. F., Sampurna, R. H., & Meigawati, D. (2022). Stategi Dinas Koperasi, UKM, Perdagangan dan Perindustrian dalam Pemberdayaan UMKM di Kota Sukabumi. Jurnal Inovasi Penelitian, 2(10), 3353–3360.
Sari, D. K., & Budiharsono, S. (2023). Strategi Pemerintah Kota Bekasi Dalam Pengembangan UMKM Makanan Minuman Pada Era Digital. Management Studies and Entrepreneurship Journal (MSEJ), 4(4), 3603–3612.
Stone, R. J., Cox, A., & Gavin, M. (2020). Human resource management. John Wiley & Sons.
Surya, B., Menne, F., Sabhan, H., Suriani, S., Abubakar, H., & Idris, M. (2021). Economic growth, increasing productivity of SMEs, and open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 20.
Tamba, S. P., Batubara, M. D., Purba, W., Sihombing, M., Siregar, V. M. M., & Banjarnahor, J. (2019). Book data grouping in libraries using the k-means clustering method. Journal of Physics: Conference Series, 1230(1), 12074.
Terttiaavini, T., Marnisah, L., Yulius, Y., & Saputra, T. S. (2019). Pengembangan Kewirausahaan †œKemplang Tunu†Sebagai Produk Cemilan Khas Kota Palembang. Jurnal Abdimas Mandiri, 3(1).
Terttiaavini, T., Sofian, S., & Saputra, T. S. (2021). Pendampingan Penyusunan Program Rencana Kerja Badan Usaha Milik Desa Dalam Rangka Optimalisasi Potensi Desa Serijabo Ogan Ilir Sumatera Selatan. JMM (Jurnal Masyarakat Mandiri), 5(6), 3536–3546.
Tian, W., Zheng, Y., Yang, R., Ji, S., & Wang, J. (2014). Research on clustering based meteorological data mining methods. Adv Sci Technol Lett, 79, 106–112.
Wahyudi, E. N., Utomo, A. P., & Mariana, N. (2019). Pengelompokan Jenis Usaha Umkm Kota Semarang Dalam Rangka Proses Pembinaan Dan Pendampingan Untuk Pengembangan Usaha Dengan Teknik Data Mining. Dinamik, 24(1), 13–20.
Yacob, S., Erida, E., Machpuddin, A., & Alamsyah, D. (2021). A model for the business performance of micro, small and medium enterprises: Perspective of social commerce and the uniqueness of resource capability in Indonesia. Management Science Letters, 11(1), 101–110
DOI: https://doi.org/10.31932/jpe.v10i2.4092
Article Metrics
Abstract view : 158 timesPDF - 87 times
Refbacks
- There are currently no refbacks.

This work is licensed under Lisensi Internasional Creative Commons Attribution-ShareAlike 4.0 .